This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DingZhao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) are vulnerable to jailbreak attacks that exploit weaknesses in traditional safety alignment, which often relies on rigid refusal heuristics or representation engineering to block harmful outputs. While they are effective for direct adversarial attacks, they fall short of broader safety challenges requiring nuanced, context-aware decision-making. To address this, we propose Reasoning-enhanced Fine-Tuning for interpretable LLM Safety (RATIONAL), a novel framework that trains models to engage in explicit safe reasoning before response. Fine-tuned models leverage the extensive pretraining knowledge in self-generated reasoning to bootstrap their own safety through structured reasoning, internalizing context-sensitive decision-making. Our findings suggest that safety extends beyond refusal, requiring context awareness for more robust, interpretable, and adaptive responses. Reasoning is not only a core capability of LLMs but also a fundamental mechanism for LLM safety. RATIONAL employs reasoning-enhanced fine-tuning, allowing it to reject harmful prompts while providing meaningful and context-aware responses in complex scenarios.
Large Language Models (LLMs) have demonstrated strong reasoning capabilities across various tasks. However, even minor variations in query phrasing, despite preserving the underlying semantic meaning, can significantly affect their performance. To address this, we focus on enhancing LLMs’ awareness of symmetry in query variations and propose syMmetry-ENhanceD (MEND) data augmentation, a data-centric approach that improves the model’s ability to extract useful information from context. Unlike existing methods that emphasize reasoning chain augmentation, our approach improves model robustness at the knowledge extraction stage through query augmentation, enabling more data-efficient training and stronger generalization to Out-of-Distribution (OOD) settings. Extensive experiments on both logical and arithmetic reasoning tasks show that MEND enhances reasoning performance across diverse query variations, providing new insights into improving LLM robustness through structured dataset curation.
Large Language models (LLMs) have shown remarkable success in assisting robot learning tasks, i.e., complex household planning.However, the performance of pretrained LLMs heavily relies on domain-specific templated text data, which may be infeasible in real-world robot learning tasks with image-based observations. Moreover, existing LLMs with text inputs lack the capability to evolve with non-expert interactions with environments.In this work, we introduce a novel learning paradigm that generates robots’ executable actions in the form of text, derived solely from visual observations. Our proposed paradigm stands apart from previous works, which utilized either language instructions or a combination of language and visual data as inputs. We demonstrate that our proposed method can employ two fine-tuning strategies, including imitation learning and reinforcement learning approaches, to adapt to the target test tasks effectively.We conduct extensive experiments involving various model selections, environments, and tasks across 7 house layouts in the VirtualHome environment. Our experimental results demonstrate that our method surpasses existing baselines, confirming the effectiveness of this novel learning paradigm.
Recent advancements in Large Language Models (LLMs) have drawn increasing attention since the learned embeddings pretrained on large-scale datasets have shown powerful ability in various downstream applications. However, whether the learned knowledge by LLMs can be transferred to clinical cardiology remains unknown. In this work, we aim to bridge this gap by transferring the knowledge of LLMs to clinical Electrocardiography (ECG). We propose an approach for cardiovascular disease diagnosis and automatic ECG diagnosis report generation. We also introduce an additional loss function by Optimal Transport (OT) to align the distribution between ECG and language embedding. The learned embeddings are evaluated on two downstream tasks: (1) automatic ECG diagnosis report generation, and (2) zero-shot cardiovascular disease detection. Our approach is able to generate high-quality cardiac diagnosis reports and also achieves competitive zero-shot classification performance even compared with supervised baselines, which proves the feasibility of transferring knowledge from LLMs to the cardiac domain.
Multimedia summarization with multimodal output (MSMO) is a recently explored application in language grounding. It plays an essential role in real-world applications, i.e., automatically generating cover images and titles for news articles or providing introductions to online videos. However, existing methods extract features from the whole video and article and use fusion methods to select the representative one, thus usually ignoring the critical structure and varying semantics with video/document. In this work, we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal transport alignment with visual and textual segmentation. Our method first decomposes both videos and articles into segments in order to capture the structural semantics, and then follows a cross-domain alignment objective with optimal transport distance, which leverages multimodal interaction to match and select the visual and textual summary. We evaluated our method on three MSMO datasets, and achieved performance improvement by 8% & 6% of textual and 6.6% &5.7% of video summarization, respectively, which demonstrated the effectiveness of our method in producing high-quality multimodal summaries.
Brain Signals, such as Electroencephalography (EEG), and human languages have been widely explored independently for many downstream tasks, however, the connection between them has not been well explored. In this study, we explore the relationship and dependency between EEG and language. To study at the representation level, we introduced MTAM, a Multimodal Transformer Alignment Model, to observe coordinated representations between the two modalities. We used various relationship alignment-seeking techniques, such as Canonical Correlation Analysis and Wasserstein Distance, as loss functions to transfigure features. On downstream applications, sentiment analysis and relation detection, we achieved new state-of-the-art results on two datasets, ZuCo and K-EmoCon. Our method achieved an F1-score improvement of 1.7% on K-EmoCon and 9.3% on Zuco datasets for sentiment analysis, and 7.4% on ZuCo for relation detection. In addition, we provide interpretations of the performance improvement: (1) feature distribution shows the effectiveness of the alignment module for discovering and encoding the relationship between EEG and language; (2) alignment weights show the influence of different language semantics as well as EEG frequency features; (3) brain topographical maps provide an intuitive demonstration of the connectivity in the brain regions. Our code is available at https://github.com/Jason-Qiu/EEG_Language_Alignment.