This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Dimitar IliyanovDimitrov
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
We present polyNarrative, a new multilingual dataset of news articles, annotated for narratives. Narratives are overt or implicit claims, recurring across articles and languages, promoting a specific interpretation or viewpoint on an ongoing topic, often propagating mis/disinformation. We developed two-level taxonomies with coarse- and fine-grained narrative labels for two domains: (i) climate change and (ii) the military conflict between Ukraine and Russia. We collected news articles in four languages (Bulgarian, English, Portuguese, and Russian) related to the two domains and manually annotated them at the paragraph level. We make the dataset publicly available, along with experimental results of several strong baselines that assign narrative labels to news articles at the paragraph or the document level. We believe that this dataset will foster research in narrative detection and enable new research directions towards more multi-domain and highly granular narrative related tasks.
We introduce a novel multilingual and hierarchical corpus annotated for entity framing and role portrayal in news articles. The dataset uses a unique taxonomy inspired by storytelling elements, comprising 22 fine-grained roles, or archetypes, nested within three main categories: protagonist, antagonist, and innocent. Each archetype is carefully defined, capturing nuanced portrayals of entities such as guardian, martyr, and underdog for protagonists; tyrant, deceiver, and bigot for antagonists; and victim, scapegoat, and exploited for innocents. The dataset includes 1,378 recent news articles in five languages (Bulgarian, English, Hindi, European Portuguese, and Russian) focusing on two critical domains of global significance: the Ukraine-Russia War and Climate Change. Over 5,800 entity mentions have been annotated with role labels. This dataset serves as a valuable resource for research into role portrayal and has broader implications for news analysis. We describe the characteristics of the dataset and the annotation process, and we report evaluation results on fine-tuned state-of-the-art multilingual transformers and hierarchical zero-shot learning using LLMs at the level of a document, a paragraph, and a sentence.
Persuasion (or propaganda) techniques detection is a relatively novel task in Natural Language Processing (NLP). While there have already been a number of annotation campaigns, they have been based on heuristic guidelines, which have never been thoroughly discussed. Here, we present the first systematic analysis of a complex annotation task -detecting 22 persuasion techniques in memes-, for which we provided continuous expert oversight. The presence of an expert allowed us to critically analyze specific aspects of the annotation process. Among our findings, we show that inter-annotator agreement alone inadequately assessed annotation correctness. We thus define and track different error types, revealing that expert feedback shows varying effectiveness across error categories. This pattern suggests that distinct mechanisms underlie different kinds of misannotations. Based on our findings, we advocate for an expert oversight in annotation tasks and periodic quality audits. As an attempt to reduce the costs for this, we introduce a probabilistic model for optimizing intervention scheduling.
We present NarratEX, a dataset designed for the task of explaining the choice of the Dominant Narrative in a news article, and intended to support the research community in addressing challenges such as discourse polarization and propaganda detection. Our dataset comprises 1,056 news articles in four languages, Bulgarian, English, Portuguese, and Russian, covering two globally significant topics: the Ukraine-Russia War (URW) and Climate Change (CC). Each article is manually annotated with a dominant narrative and sub-narrative labels, and an explanation justifying the chosen labels. We describe the dataset, the process of its creation, and its characteristics. We present experiments with two new proposed tasks: Explaining Dominant Narrative based on Text, which involves writing a concise paragraph to justify the choice of the dominant narrative and sub-narrative of a given text, and Inferring Dominant Narrative from Explanation, which involves predicting the appropriate dominant narrative category based on an explanatory text. The proposed dataset is a valuable resource for advancing research on detecting and mitigating manipulative content, while promoting a deeper understanding of how narratives influence public discourse.