Dima Rekesh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
SWAN: An Efficient and Scalable Approach for Long-Context Language Modeling
Krishna C Puvvada | Faisal Ladhak | Santiago Akle Serano | Cheng-Ping Hsieh | Shantanu Acharya | Somshubra Majumdar | Fei Jia | Samuel Kriman | Simeng Sun | Dima Rekesh | Boris Ginsburg
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We present SWAN, a causal Transformer architecture in the decoder-only style that generalizes robustly to sequence lengths substantially longer than those seen during training. SWAN interleaves layers without positional encodings (NoPE) and sliding-window attention layers equipped with rotary positional encodings (SWA-RoPE), and applies a dynamic scaling mechanism for attention scores during inference. Experiments demonstrate that SWAN achieves strong length extrapolation without requiring additional long-context training. In addition, SWAN is more computationally efficient than the standard Transformer architecture, resulting in lower training cost and higher inference throughput. We further demonstrate that existing pre-trained decoder-only models can be adapted to the SWAN architecture with minimal continued training, enabling extended contexts. Overall, our work presents an effective approach for scaling language models to longer contexts in a robust and efficient manner.