This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DiegoDe Cao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Lexical resources are basic components of many text processing system devoted to information extraction, question answering or dialogue. In paste years many resources have been developed such as FrameNet and WordNet. FrameNet describes prototypical situations (i.e. Frames) while WordNet defines lexical meaning (senses) for the majority of English nouns, verbs, adjectives and adverbs. A major difference between FrameNet and WordNet refers to their coverage. Due of this lack of coverage, in recent years some approaches have been studied to make a bridge between this two resources, so a resource is used to extend the coverage of the other one. The nature of these approaches leave from supervised to supervised methods. The major problem is that there is not a standard in evaluation of the mapping. Each different work have tested own approach with a custom gold standard. This work give an extensive evaluation of the model proposed in (De Cao et al., 2008) using gold standard proposed in other works. Moreover this work give an empirical comparison between other available resources. As outcome of this work we also release the full mapping resource made according to the model proposed in (De Cao et al., 2008).
In this paper, we present an original framework to model frame semantic resources (namely, FrameNet) using minimal supervision. This framework can be leveraged both to expand an existing FrameNet with new knowledge, and to induce a FrameNet in a new language. Our hypothesis is that a frame semantic resource can be modeled and represented by a suitable semantic space model. The intuition is that semantic spaces are an effective model of the notion of being characteristic of a frame for both lexical elements and full sentences. The paper gives two main contributions. First, it shows that our hypothesis is valid and can be successfully implemented. Second, it explores different types of semantic VSMs, outlining which one is more suitable for representing a frame semantic resource. In the paper, VSMs are used for modeling the linguistic core of a frame, the lexical units. Indeed, if the hypothesis is verified for these units, the proposed framework has a much wider application.