Diana Cuevas Plancarte


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
MEDs for PETs: Multilingual Euphemism Disambiguation for Potentially Euphemistic Terms
Patrick Lee | Alain Chirino Trujillo | Diana Cuevas Plancarte | Olumide Ojo | Xinyi Liu | Iyanuoluwa Shode | Yuan Zhao | Anna Feldman | Jing Peng
Findings of the Association for Computational Linguistics: EACL 2024

Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.