This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DiamantinoCaseiro
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Contextual biasing enables speech recognizers to transcribe important phrases in the speaker’s context, such as contact names, even if they are rare in, or absent from, the training data. Attention-based biasing is a leading approach which allows for full end-to-end cotraining of the recognizer and biasing system and requires no separate inference-time components. Such biasers typically consist of a context encoder; followed by a context filter which narrows down the context to apply, improving per-step inference time; and, finally, context application via cross attention. Though much work has gone into optimizing per-frame performance, the context encoder is at least as important: recognition cannot begin before context encoding ends. Here, we show the lightweight phrase selection pass can be moved before context encoding, resulting in a speedup of up to 16.1 times and enabling biasing to scale to 20K phrases with a maximum pre-decoding delay under 33ms. With the addition of phrase- and wordpiece-level cross-entropy losses, our technique also achieves up to a 37.5% relative WER reduction over the baseline without the losses and lightweight phrase selection pass.
This paper reports an experience on producing manual word alignments over six different language pairs (all combinations between Portuguese, English, French and Spanish) (Graça et al., 2008). Word alignment of each language pair is made over the first 100 sentences of the common test set from the Europarl corpora (Koehn, 2005), corresponding to 600 new annotated sentences. This collection is publicly available at http://www.l2f.inesc- id.pt/resources/translation/. It contains, to our knowledge, the first word alignment gold set for the Portuguese language, with three other languages. Besides, it is to our knowledge, the first multi-language manual word aligned parallel corpus, where the same sentences are annotated for each language pair. We started by using the guidelines presented at (Mariño, 2005) and performed several refinements: some due to under-specifications on the original guidelines, others because of disagreement on some choices. This lead to the development of an extensive new set of guidelines for multi-lingual word alignment annotation that, we believe, makes the alignment process less ambiguous. We evaluate the inter-annotator agreement obtaining an average of 91.6% agreement between the different language pairs.
We present the machine translation system used by L2F from INESC-ID in the evaluation campaign of the International Workshop on Spoken Language Translation (2007), in the task of translating spontaneous conversations in the travel domain from Italian to English.