Di Wu Hebeu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CaTER: A Framework for Context-aware Topology Entity Retrieval Contrastive Learning in End-to-End Task-Oriented Dialogue Systems
Di Wu Hebeu | Zhizhi Yu
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieving entity knowledge that aligns with user intent is essential for task-oriented dialogue (TOD) systems to support personalization and localization, especially under large-scale knowledge bases. However, generative models tend to suffer from implicit association preference, while retrieval-generation approaches face knowledge transfer discrepancies. To address these challenges, we propose CaTER, a Context-aware Topology Entity Retrieval Contrastive Learning Framework. CaTER introduces a cycle context-aware distilling attention mechanism, which employs context-independent sparse pooling to suppress noise from weakly relevant attributes. We further construct topologically hard negative samples by decoupling entity information from generated responses and design a topology entity retrieval contrastive loss to train the retriever by reverse distillation. Extensive experiments on three standard TOD benchmarks with both small and large-scale knowledge bases show that CaTER consistently outperforms strong baselines such as MAKER and MK-TOD, achieving state-of-the-art performance in TOD system.