Dhatchinamoorthi Kunde Govindarajan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
EmoNews: A Spoken Dialogue System for Expressive News Conversations
Ryuki Matsuura | Shikhar Bharadwaj | Jiarui Liu | Dhatchinamoorthi Kunde Govindarajan
Proceedings of the 26th Annual Meeting of the Special Interest Group on Discourse and Dialogue

We develop a task-oriented spoken dialogue system (SDS) that regulates emotional speech based on contextual cues to enable more empathetic news conversations. Despite advancements in emotional text-to-speech (TTS) techniques, task-oriented emotional SDSs remain underexplored due to the compartmentalized nature of SDS and emotional TTS research, as well as the lack of standardized evaluation metrics for social goals. We address these challenges by developing an emotional SDS for news conversations that utilizes a large language model (LLM)-based sentiment analyzer to identify appropriate emotions and PromptTTS to synthesize context-appropriate emotional speech. We also propose subjective evaluation scale for emotional SDSs and judge the emotion regulation performance of the proposed and baseline systems. Experiments showed that our emotional SDS outperformed a baseline system in terms of the emotion regulation and engagement. These results suggest the critical role of speech emotion for more engaging conversations. All our source code is open-sourced.