Deyuan Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
M3SciQA: A Multi-Modal Multi-Document Scientific QA Benchmark for Evaluating Foundation Models
Chuhan Li | Ziyao Shangguan | Yilun Zhao | Deyuan Li | Yixin Liu | Arman Cohan
Findings of the Association for Computational Linguistics: EMNLP 2024

Existing evaluation benchmarks for foundation models in understanding scientific literature predominantly focus on single-document, text-only tasks. Such benchmarks often do not adequately represent the complexity of research workflows, which typically also involve interpreting non-textual data, such as figures and tables, and gathering information across multiple documents and related literature. To address this gap, we introduce M3SciQA, a multi-modal, multi-document scientific question answering benchmark designed for a more comprehensive evaluation of foundation models. M3Sci QA consists of 1452 expert-annotated questions spanning 70 natural language processing paper clusters, where each cluster represents a primary paper along with all its cited documents, mirroring the workflow of comprehending a single paper by requiring multi-modal and multi-document data. With M3SciQA, we conduct a comprehensive evaluation of 18 frontier foundation models. Our results indicate that current foundation models still significantly underperform compared to human experts in multi-modal information retrieval and in reasoning across multiple scientific documents. Additionally, we explore the implications of these findings for the future advancement of applying foundation models in multi-modal scientific literature analysis.