This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DevikaSalunke
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We explore the potential of ChatGPT to generate conversations focused on self-care strategies for African-American patients with heart failure, a domain with limited specialized datasets. To simulate patient-health educator dialogues, we employed four prompting strategies: aspects, African American Vernacular English, Social Determinants of Health (SDOH), and SDOH-informed reasoning. Conversations were generated across key self-care aspects— food, exercise, and fluid intake—with varying turn lengths and incorporated patient-specific SDOH attributes such as age, gender, neighborhood, and socioeconomic status. Our findings show that effective prompt design is essential. While incorporating SDOH and reasoning improves dialogue quality, ChatGPT still lacks the empathy and engagement needed for meaningful healthcare communication.
We propose a dialogue system that enables heart failure patients to inquire about salt content in foods and help them monitor and reduce salt intake. Addressing the lack of specific datasets for food-based salt content inquiries, we develop a template-based conversational dataset. The dataset is structured to ask clarification questions to identify food items and their salt content. Our findings indicate that while fine-tuning transformer-based models on the dataset yields limited performance, the integration of Neuro-Symbolic Rules significantly enhances the system’s performance. Our experiments show that by integrating neuro-symbolic rules, our system achieves an improvement in joint goal accuracy of over 20% across different data sizes compared to naively fine-tuning transformer-based models.
Heart failure is a global epidemic with debilitating effects. People with heart failure need to actively participate in home self-care regimens to maintain good health. However, these regimens are not as effective as they could be and are influenced by a variety of factors. Patients from minority communities like African American (AA) and Hispanic/Latino (H/L), often have poor outcomes compared to the average Caucasian population. In this paper, we lay the groundwork to develop an interactive dialogue agent that can assist AA and H/L patients in a culturally sensitive and linguistically accurate manner with their heart health care needs. This will be achieved by extracting relevant educational concepts from the interactions between health educators and patients. Thus far we have recorded and transcribed 20 such interactions. In this paper, we describe our data collection process, thematic and initiative analysis of the interactions, and outline our future steps.