Devesh Surve


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Detecting Errors through Ensembling Prompts (DEEP): An End-to-End LLM Framework for Detecting Factual Errors
Alex Chandler | Devesh Surve | Hui Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Accurate text summarization is one of the most common and important tasks performed by Large Language Models, where the costs of human review for an entire document may be high, but the costs of errors in summarization may be even greater. We propose Detecting Errors through Ensembling Prompts (DEEP) - an end-to-end large language model framework for detecting factual errors in text summarization. Our framework uses a diverse set of LLM prompts to identify factual inconsistencies, treating their outputs as binary features, which are then fed into ensembling models. We then calibrate the ensembled models to produce empirically accurate probabilities that a text is factually consistent or free of hallucination. We demonstrate that prior models for detecting factual errors in summaries perform significantly worse without optimizing the thresholds on subsets of the evaluated dataset. Our framework achieves state-of-the-art (SOTA) balanced accuracy on the AggreFact-XSUM FTSOTA, TofuEval Summary-Level, and HaluEval Summarization benchmarks in detecting factual errors within transformer-generated text summaries. It does so without any fine-tuning of the language model or reliance on thresholding techniques not available in practical settings.