This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DeruiZhu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In recent years, large language models (LLMs) have made remarkable advancements, yet hallucination, where models produce inaccurate or non-factual statements, remains a significant challenge for real-world deployment. Although current classification-based methods, such as SAPLMA, are highly efficient in mitigating hallucinations, they struggle when non-factual information arises in the early or mid-sequence of outputs, reducing their reliability. To address these issues, we propose Hallucination Detection-Neural Differential Equations (HD-NDEs), a novel method that systematically assesses the truthfulness of statements by capturing the full dynamics of LLMs within their latent space. Our approaches apply neural differential equations (Neural DEs) to model the dynamic system in the latent space of LLMs. Then, the sequence in the latent space is mapped to the classification space for truth assessment. The extensive experiments across five datasets and six widely used LLMs demonstrate the effectiveness of HD-NDEs, especially, achieving over 14% improvement in AUC-ROC on the True-False dataset compared to state-of-the-art techniques.
The rapid advancement of vision-language models (VLMs) has brought a lot of attention to their safety alignment. However, existing methods have primarily focused on model undersafety, where the model responds to hazardous queries, while neglecting oversafety, where the model refuses to answer safe queries. In this paper, we introduce the concept of safety calibration, which systematically addresses both undersafety and oversafety. Specifically, we present VSCBench, a novel dataset of 3,600 image-text pairs that are visually or textually similar but differ in terms of safety, which is designed to evaluate safety calibration across image-centric and text-centric scenarios. Based on our benchmark, we evaluate safety calibration across eleven widely used VLMs. Our extensive experiments revealed major issues with both undersafety and oversafety. We further investigated four approaches to improve the model’s safety calibration. We found that even though some methods effectively calibrated the models’ safety problems, these methods also lead to the degradation of models’ utility. This trade-off underscores the urgent need for advanced calibration methods, and our benchmark provides a valuable tool for evaluating future approaches.
Large vision-language models (LVLMs) have made significant progress in recent years. While LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs, they are prone to producing hallucinations. While several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools, which complicates their practical application. To assess the viability of alternative methods, it is critical to understand whether the reference-free approaches, which do not rely on any external tools, can efficiently detect hallucinations. Therefore, we initiate an exploratory study to demonstrate the effectiveness of different reference-free solutions in detecting hallucinations in LVLMs. In particular, we conduct an extensive study on three kinds of techniques: uncertainty-based, consistency-based, and supervised uncertainty quantification methods on four representative LVLMs across two different tasks. The empirical results show that the reference-free approaches are capable of effectively detecting non-factual responses in LVLMs, with the supervised uncertainty quantification method outperforming the others, achieving the best performance across different settings.
Attention-based neural machine translation (NMT) models selectively focus on specific source positions to produce a translation, which brings significant improvements over pure encoder-decoder sequence-to-sequence models. This work investigates NMT while replacing the attention component. We study a neural hidden Markov model (HMM) consisting of neural network-based alignment and lexicon models, which are trained jointly using the forward-backward algorithm. We show that the attention component can be effectively replaced by the neural network alignment model and the neural HMM approach is able to provide comparable performance with the state-of-the-art attention-based models on the WMT 2017 German↔English and Chinese→English translation tasks.
Recently, the neural machine translation systems showed their promising performance and surpassed the phrase-based systems for most translation tasks. Retreating into conventional concepts machine translation while utilizing effective neural models is vital for comprehending the leap accomplished by neural machine translation over phrase-based methods. This work proposes a direct HMM with neural network-based lexicon and alignment models, which are trained jointly using the Baum-Welch algorithm. The direct HMM is applied to rerank the n-best list created by a state-of-the-art phrase-based translation system and it provides improvements by up to 1.0% Bleu scores on two different translation tasks.