This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DeliZhao
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
As LLMs continuously evolve, there is an urgent need for a reliable evaluation method that delivers trustworthy results promptly. Currently, static benchmarks suffer from inflexibility and unreliability, leading users to prefer human voting platforms like Chatbot Arena. However, human evaluations require significant manual effort. Therefore, we propose Auto-Arena, an innovative framework that automates the entire evaluation process using LLM-powered agents. Firstly, an LLM examiner generates questions. Then, two LLM candidates engage in a multi-round peer battle based on the questions, aiming at revealing their true performance differences. Finally, a committee of LLM judges collaboratively discusses and decides the winner, reducing bias and enhancing fairness. During the peer battles, we observe intriguing scenarios where the LLM candidates display competitive behaviors and learn from the opponents. In our extensive experiments involving 15 recent LLMs, Auto-Arena shows a 92.14% correlation with human preferences, surpassing all previous expert-annotated benchmarks without any manual efforts. Auto-Arena offers a promising alternative to current human evaluation platforms for evaluating LLMs automatically.
Many challenging reasoning tasks require not just rapid, intuitive responses, but a more deliberate, multi-step approach. Recent progress in large language models (LLMs) highlights an important shift from the “System 1” way of quick reactions to the “System 2” style of reflection-and-correction problem solving. However, current benchmarks heavily rely on the final-answer accuracy, leaving much of a model’s intermediate reasoning steps unexamined. This fails to assess the model’s ability to reflect and rectify mistakes within the reasoning process. To bridge this gap, we introduce FINEREASON, a logic-puzzle benchmark for systematic evaluation of LLMs’ reasoning capabilities. Each puzzle can be decomposed into atomic steps, making it ideal for rigorous validation of intermediate correctness. Building on this, we introduce two tasks: state checking and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move. To support broader research, we also provide a puzzle training set aimed at enhancing general reasoning. We show that models trained on our state checking and transition data demonstrate gains in mathematical reasoning by up to 5.1%.
Reasoning-based large language models have excelled in mathematics and programming, yet their potential in knowledge-intensive medical question answering remains underexplored and insufficiently validated in clinical contexts.To bridge this gap, we introduce ReasonMed, the largest medical reasoning dataset to date, comprising 370k high-quality examples distilled from 1.75 million initial reasoning paths generated by complementary LLMs and curated through a cost-efficient easy-medium-difficult (EMD) pipeline.ReasonMed is built through a multi-agent generation, verification, and refinement process, in which an Error Refiner improves reasoning paths by correcting error-prone steps identified by a verifier.Using ReasonMed, we investigate effective strategies for training medical reasoning models and find that integrating detailed CoT reasoning with concise answer summaries yields the most robust fine-tuning results.Models trained on ReasonMed set a new benchmark: ReasonMed-7B surpasses the prior best sub-10B models by 4.17% and even exceeds LLaMA3.1-70B on PubMedQA by 4.60%. When scaled to ReasonMed-14B, it remains highly competitive, underscoring consistent scaling potential.The codes and datasets are available at https://github.com/YuSun-Work/ReasonMed.
Research ideation is crucial for scientific progress, but the exponential increase in scientific literature makes it challenging to stay updated and identify impactful directions. Recent developments in large language models(LLMs) offer a promising avenue to automate this process. However, existing methods for idea generation either trivially prompt LLMs or expose LLMs to extensive literature without indicating useful information. Inspired by human research processes, we propose a Chain-of-Ideas (CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization helps LLMs better grasp current advancements, thereby improving ideation capabilities. Further, we present Idea Arena, a protocol for evaluating idea-generation methods from different perspectives, which aligns closely with the preferences of human researchers. Experiments show that CoI agent consistently outperforms existing methods and matches human quality in idea generation. Moreover, CoI agent is budget-friendly, requiring only $0.50 to generate a candidate idea and its experimental design.
Recent advancements in reinforcement learning (RL) have enhanced the reasoning abilities of large language models (LLMs), yet the impact on multimodal LLMs (MLLMs) is limited. Particularly in vision-intensive tasks like geometric reasoning, MLLMs hallucinate frequently, leading to inaccurate reasoning. We attribute this to the perceptual bottleneck in MLLMs, which caps the benefits of reasoning training. To quantify this, we design a Geo-Perception Question-Answering (GeoPQA) benchmark, targeting basic geometric concepts and spatial relationships. Experiments on GeoPQA reveal significant shortcomings of MLLMs in visual perception, constraining RL reward signals for training. To address this bottleneck, we propose a two-stage RL training framework by first enhancing the visual perception of geometric structures, then fostering reasoning capabilities. Applied to Qwen2.5-VL-3B-Instruct, our two-stage training improves geometric reasoning by 9.7% and problem-solving by 9.1%, compared to the direct reasoning training approach. Our method also generalizes to other vision-intensive domains like figure understanding, highlighting the importance of perceptual grounding in effective MLLM reasoning.