Deger Ayata


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
BUSEM at SemEval-2017 Task 4A Sentiment Analysis with Word Embedding and Long Short Term Memory RNN Approaches
Deger Ayata | Murat Saraclar | Arzucan Ozgur
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes our approach for SemEval-2017 Task 4: Sentiment Analysis in Twitter. We have participated in Subtask A: Message Polarity Classification subtask and developed two systems. The first system uses word embeddings for feature representation and Support Vector Machine, Random Forest and Naive Bayes algorithms for classification of Twitter messages into negative, neutral and positive polarity. The second system is based on Long Short Term Memory Recurrent Neural Networks and uses word indexes as sequence of inputs for feature representation.