Debbie Hui Tian Choong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Banking Done Right: Redefining Retail Banking with Language-Centric AI
Xin Jie Chua | Jeraelyn Ming Li Tan | Jia Xuan Tan | Soon Chang Poh | Yi Xian Goh | Debbie Hui Tian Choong | Foong Chee Mun | Sze Jue Yang | Chee Seng Chan
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

This paper presents Ryt AI, an LLM-native agentic framework that powers Ryt Bank to enable customers to execute core financial transactions through natural language conversation. This represents the first global regulator-approved deployment worldwide where conversational AI functions as the primary banking interface, in contrast to prior assistants that have been limited to advisory or support roles. Built entirely in-house, Ryt AI is powered by ILMU, a closed-source LLM developed internally, and replaces rigid multi-screen workflows with a single dialogue orchestrated by four LLM-powered agents (Guardrails, Intent, Payment, and FAQ). Each agent attaches a task-specific LoRA adapter to ILMU, which is hosted within the bank’s infrastructure to ensure consistent behavior with minimal overhead. Deterministic guardrails, human-in-the-loop confirmation, and a stateless audit architecture provide defense-in-depth for security and compliance. The result is Banking Done Right: demonstrating that regulator-approved natural-language interfaces can reliably support core financial operations under strict governance.