Debashish Chakraborty


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Whisper-UT: A Unified Translation Framework for Speech and Text
Cihan Xiao | Matthew Wiesner | Debashish Chakraborty | Reno Kriz | Keith Cunningham | Kenton Murray | Kevin Duh | Luis Tavarez-Arce | Paul McNamee | Sanjeev Khudanpur
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Encoder-decoder models have achieved remarkable success in speech and text tasks, yet efficiently adapting these models to diverse uni/multi-modal scenarios remains an open challenge. In this paper, we propose Whisper-UT, a unified and efficient framework that leverages lightweight adapters to enable seamless adaptation across tasks, including a multi-modal machine translation (MMT) task that explicitly conditions translation on both speech and source language text inputs. By incorporating ASR hypotheses or ground-truth transcripts as prompts, this approach not only enables the system to process both modalities simultaneously but also enhances speech translation (ST) performance through a 2-stage decoding strategy. We demonstrate our methods using the Whisper model, though in principle they are general and could be applied to similar multitask models. We highlight the effectiveness of cross-modal and cross-task fine-tuning, which improves performance without requiring 3-way parallel data. Our results underscore the flexibility, efficiency, and general applicability of the proposed framework for multi-modal translation.