Dawen Liang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LLM-based Conversational Recommendation Agents with Collaborative Verbalized Experience
Yaochen Zhu | Harald Steck | Dawen Liang | Yinhan He | Nathan Kallus | Jundong Li
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models (LLMs) have demonstrated impressive zero-shot capabilities in conversational recommender systems (CRS). However, effectively utilizing historical conversations remains a significant challenge. Current approaches either retrieve few-shot examples or extract global rules to enhance the prompt, which fail to capture the implicit and preference-oriented knowledge. To address this challenge, we propose LLM-based Conversational Recommendation Agents with Collaborative Verbalized Experience, abbreviated as CRAVE. CRAVE begins by sampling trajectories of LLM-based CRS agents on historical queries and establishing verbalized experience banks by reflecting the agents’ actions on user feedback. Additionally, we introduce a collaborative retriever network fine-tuned with item content-parameterized multinomial likelihood on query-item pairs to retrieve preference-oriented verbal experiences for new queries. Furthermore, we developed a debater-critic agent (DCA) system where each agent maintains an independent collaborative experience bank and works together to enhance the CRS recommendations. We demonstrate that the open-ended debate and critique nature of DCA benefits significantly from the collaborative experience augmentation with CRAVE. The code is available at https://github.com/yaochenzhu/CRAVE.