David Van Bruwaene


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
uOttawa at SemEval-2018 Task 1: Self-Attentive Hybrid GRU-Based Network
Ahmed Husseini Orabi | Mahmoud Husseini Orabi | Diana Inkpen | David Van Bruwaene
Proceedings of the 12th International Workshop on Semantic Evaluation

We propose a novel attentive hybrid GRU-based network (SAHGN), which we used at SemEval-2018 Task 1: Affect in Tweets. Our network has two main characteristics, 1) has the ability to internally optimize its feature representation using attention mechanisms, and 2) provides a hybrid representation using a character level Convolutional Neural Network (CNN), as well as a self-attentive word-level encoder. The key advantage of our model is its ability to signify the relevant and important information that enables self-optimization. Results are reported on the valence intensity regression task.

pdf bib
Cyberbullying Intervention Based on Convolutional Neural Networks
Qianjia Huang | Diana Inkpen | Jianhong Zhang | David Van Bruwaene
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)

This paper describes the process of building a cyberbullying intervention interface driven by a machine-learning based text-classification service. We make two main contributions. First, we show that cyberbullying can be identified in real-time before it takes place, with available machine learning and natural language processing tools. Second, we present a mechanism that provides individuals with early feedback about how other people would feel about wording choices in their messages before they are sent out. This interface not only gives a chance for the user to revise the text, but also provides a system-level flagging/intervention in a situation related to cyberbullying.

pdf bib
Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text
Ahmed Husseini Orabi | Mahmoud Husseini Orabi | Qianjia Huang | Diana Inkpen | David Van Bruwaene
Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)

In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74% F1 performance for the Facebook test set and 56.9% for the Twitter test set, for detecting aggression from text.