David Golub


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Learning to Write with Cooperative Discriminators
Ari Holtzman | Jan Buys | Maxwell Forbes | Antoine Bosselut | David Golub | Yejin Choi
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite their local fluency, long-form text generated from RNNs is often generic, repetitive, and even self-contradictory. We propose a unified learning framework that collectively addresses all the above issues by composing a committee of discriminators that can guide a base RNN generator towards more globally coherent generations. More concretely, discriminators each specialize in a different principle of communication, such as Grice’s maxims, and are collectively combined with the base RNN generator through a composite decoding objective. Human evaluation demonstrates that text generated by our model is preferred over that of baselines by a large margin, significantly enhancing the overall coherence, style, and information of the generations.

2017

pdf bib
Two-Stage Synthesis Networks for Transfer Learning in Machine Comprehension
David Golub | Po-Sen Huang | Xiaodong He | Li Deng
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We develop a technique for transfer learning in machine comprehension (MC) using a novel two-stage synthesis network. Given a high performing MC model in one domain, our technique aims to answer questions about documents in another domain, where we use no labeled data of question-answer pairs. Using the proposed synthesis network with a pretrained model on the SQuAD dataset, we achieve an F1 measure of 46.6% on the challenging NewsQA dataset, approaching performance of in-domain models (F1 measure of 50.0%) and outperforming the out-of-domain baseline by 7.6%, without use of provided annotations.

2016

pdf bib
Character-Level Question Answering with Attention
Xiaodong He | David Golub
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing