David Farr


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
RED-CT: A Systems Design Methodology for Using LLM-labeled Data to Train and Deploy Edge Linguistic Classifiers
David Farr | Nico Manzonelli | Iain Cruickshank | Jevin West
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Large language models (LLMs) have enhanced our ability to rapidly analyze and classify unstructured natural language data. However, concerns regarding cost, network limitations, and security constraints have posed challenges for their integration into industry processes. In this study, we adopt a systems design approach to employing LLMs as imperfect data annotators for downstream supervised learning tasks, introducing system intervention measures aimed at improving classification performance. Our methodology outperforms LLM-generated labels in six of eight tests and base classifiers in all tests, demonstrating an effective strategy for incorporating LLMs into the design and deployment of specialized, supervised learning models present in many industry use cases.