Dave M. Markowitz


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
The Consistent Lack of Variance of Psychological Factors Expressed by LLMs and Spambots
Vasudha Varadarajan | Salvatore Giorgi | Siddharth Mangalik | Nikita Soni | Dave M. Markowitz | H. Andrew Schwartz
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)

In recent years, the proliferation of chatbots like ChatGPT and Claude has led to an increasing volume of AI-generated text. While the text itself is convincingly coherent and human-like, the variety of expressed of human attributes may still be limited. Using theoretical individual differences, the fundamental psychological traits which distinguish people, this study reveals a distinctive characteristic of such content: AI-generations exhibit remarkably limited variation in inferrable psychological traits compared to human-authored texts. We present a review and study across multiple datasets spanning various domains. We find that AI-generated text consistently models the authorship of an “average” human with such little variation that, on aggregate, it is clearly distinguishable from human-written texts using unsupervised methods (i.e., without using ground truth labels). Our results show that (1) fundamental human traits are able to accurately distinguish human- and machine-generated text and (2) current generation capabilities fail to capture a diverse range of human traits