Daulet Toibazar


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A-SEA3𝐋-QA: A Fully Automated Self-Evolving, Adversarial Workflow for Arabic Long-Context Question-Answer Generation
Kesen Wang | Daulet Toibazar | Pedro J Moreno Mengibar
Proceedings of The Third Arabic Natural Language Processing Conference

We present an end-to-end, self-evolving adversarial workflow for long-context Question-Answer (QA) Generation in Arabic. By orchestrating multiple specialized LVLMs: a question generator, an evaluator, and a swarm of answer generators, our system iteratively refines its own performance without any human intervention. Starting from raw, multi-page Arabic documents across diverse domains, the question generator produces fine-grained, context-aware queries to be tackled by the answer generator swarm, and the evaluator assesses and feeds back quality metrics. This closed-loop cycle enables continuous learning: low-confidence outputs trigger automated re-generation and model updates, progressively enhancing question difficulty and relevance. Moreover, we set the quality metrics as a tunable hyperparameter, enabling question generation at controllable and customizable difficulty levels. We release AraLongBench, a large-scale Arabic benchmark of single- and multi-page challenges spanning hundreds of pages, and demonstrate that our self-evolving workflow substantially outperform static pipelines, markedly boosting the long-context comprehension capabilities of leading Arabic Large Vision Language Models (LVLMs). Lastly, we also meticulously architect a fully automated agentic workflow for long-context Arabic document collection.