Darren Edmonds


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Multi-Emotion Classification for Song Lyrics
Darren Edmonds | João Sedoc
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Song lyrics convey a multitude of emotions to the listener and powerfully portray the emotional state of the writer or singer. This paper examines a variety of modeling approaches to the multi-emotion classification problem for songs. We introduce the Edmonds Dance dataset, a novel emotion-annotated lyrics dataset from the reader’s perspective, and annotate the dataset of Mihalcea and Strapparava (2012) at the song level. We find that models trained on relatively small song datasets achieve marginally better performance than BERT (Devlin et al., 2018) fine-tuned on large social media or dialog datasets.