Daniel Vargas


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
MineriaUNAM at SemEval-2020 Task 3: Predicting Contextual WordSimilarity Using a Centroid Based Approach and Word Embeddings
Helena Gomez-Adorno | Gemma Bel-Enguix | Jorge Reyes-Magaña | Benjamín Moreno | Ramón Casillas | Daniel Vargas
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper presents our systems to solve Task 3 of Semeval-2020, which aims to predict the effect that context has on human perception of similarity of words. The task consists of two subtasks in English, Croatian, Finnish, and Slovenian: (1) predicting the change of similarity and (2) predicting the human scores of similarity, both of them for a pair of words within two different contexts. We tackled the problem by developing two systems, the first one uses a centroid approach and word vectors. The second one uses the ELMo language model, which is trained for each pair of words with the given context. Our approach achieved the highest score in subtask 2 for the English language.