Daniel Vallejo Aldana


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Walter Burns at SemEval-2023 Task 5: NLP-CIMAT - Leveraging Model Ensembles for Clickbait Spoiling
Emilio Villa Cueva | Daniel Vallejo Aldana | Fernando Sánchez Vega | Adrián Pastor López Monroy
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our participation in the Clickbait challenge at SemEval 2023. In this work, we address the Clickbait classification task using transformers models in an ensemble configuration. We tackle the Spoiler Generation task using a two-level ensemble strategy of models trained for extractive QA, and selecting the best K candidates for multi-part spoilers. In the test partitions, our approaches obtained a classification accuracy of 0.716 for classification and a BLEU-4 score of 0.439 for spoiler generation.