Daniel Akkerman


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
The Emergence of Compositional Languages in Multi-entity Referential Games: from Image to Graph Representations
Daniel Akkerman | Phong Le | Raquel G. Alhama
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

To study the requirements needed for a human-like language to develop, Language Emergence research uses jointly trained artificial agents which communicate to solve a task, the most popular of which is a referential game. The targets that agents refer to typically involve a single entity, which limits their ecological validity and the complexity of the emergent languages. Here, we present a simple multi-entity game in which targets include multiple entities that are spatially related. We ask whether agents dealing with multi-entity targets benefit from the use of graph representations, and explore four different graph schemes. Our game requires more sophisticated analyses to capture the extent to which the emergent languages are compositional, and crucially, what the decomposed features are. We find that emergent languages from our setup exhibit a considerable degree of compositionality, but not over all features.