Dana Moukheiber


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Learning to Ask Like a Physician
Eric Lehman | Vladislav Lialin | Katelyn Edelwina Legaspi | Anne Janelle Sy | Patricia Therese Pile | Nicole Rose Alberto | Richard Raymund Ragasa | Corinna Victoria Puyat | Marianne Katharina Taliño | Isabelle Rose Alberto | Pia Gabrielle Alfonso | Dana Moukheiber | Byron Wallace | Anna Rumshisky | Jennifer Liang | Preethi Raghavan | Leo Anthony Celi | Peter Szolovits
Proceedings of the 4th Clinical Natural Language Processing Workshop

Existing question answering (QA) datasets derived from electronic health records (EHR) are artificially generated and consequently fail to capture realistic physician information needs. We present Discharge Summary Clinical Questions (DiSCQ), a newly curated question dataset composed of 2,000+ questions paired with the snippets of text (triggers) that prompted each question. The questions are generated by medical experts from 100+ MIMIC-III discharge summaries. We analyze this dataset to characterize the types of information sought by medical experts. We also train baseline models for trigger detection and question generation (QG), paired with unsupervised answer retrieval over EHRs. Our baseline model is able to generate high quality questions in over 62% of cases when prompted with human selected triggers. We release this dataset (and all code to reproduce baseline model results) to facilitate further research into realistic clinical QA and QG: https://github.com/elehman16/discq.