This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DanaArad
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
One of the main challenges in mechanistic interpretability is circuit discovery – determining which parts of a model perform a given task. We build on the Mechanistic Interpretability Benchmark (MIB) and propose three key improvements to circuit discovery. First, we use bootstrapping to identify edges with consistent attribution scores. Second, we introduce a simple ratio-based selection strategy to prioritize strong positive-scoring edges, balancing performance and faithfulness. Third, we replace the standard greedy selection with an integer linear programming formulation. Our methods yield more faithful circuits and outperform prior approaches across multiple MIB tasks and models.
Mechanistic interpretability (MI) seeks to uncover how language models (LMs) implement specific behaviors, yet measuring progress in MI remains challenging. The recently released Mechanistic Interpretability Benchmark (MIB) provides a standardized framework for evaluating circuit and causal variable localization. Building on this foundation, the BlackboxNLP 2025 Shared Task extends MIB into a community-wide reproducible comparison of MI techniques. The shared task features two tracks: circuit localization, which assesses methods that identify causally influential components and interactions driving model behavior, and causal variable localization, which evaluates approaches that map activations into interpretable features. With three teams spanning eight different methods, participants achieved notable gains in circuit localization using ensemble and regularization strategies for circuit discovery. With one team spanning two methods, participants achieved significant gains in causal variable localization using low-dimensional and non-linear projections to featurize activation vectors. The MIB leaderboard remains open; we encourage continued work in this standard evaluation framework to measure progress in MI research going forward.
Sparse Autoencoders (SAEs) have been proposed as an unsupervised approach to learn a decomposition of a model’s latent space. This enables useful applications, such as fine-grained steering of model outputs without requiring labeled data. Current steering methods identify SAE features to target by analyzing the input tokens that activate them. However, recent work has highlighted that activations alone do not fully describe the effect of a feature on the model’s output. In this work we draw a distinction between two types of features: input features, which mainly capture patterns in the model’s input, and output features, those that have a human-understandable effect on the model’s output. We propose input and output scores to characterize and locate these types of features, and show that high values for both scores rarely co-occur in the same features. These findings have practical implications: After filtering out features with low output scores, steering with SAEs results in a 2–3x improvement, matching the performance of existing supervised methods.
Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts require further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines.
Our world is marked by unprecedented technological, global, and socio-political transformations, posing a significant challenge to textto-image generative models. These models encode factual associations within their parameters that can quickly become outdated, diminishing their utility for end-users. To that end, we introduce ReFACT, a novel approach for editing factual associations in text-to-image models without relaying on explicit input from end-users or costly re-training. ReFACT updates the weights of a specific layer in the text encoder, modifying only a tiny portion of the model’s parameters and leaving the rest of the model unaffected.We empirically evaluate ReFACT on an existing benchmark, alongside a newly curated dataset.Compared to other methods, ReFACT achieves superior performance in both generalization to related concepts and preservation of unrelated concepts.Furthermore, ReFACT maintains image generation quality, making it a practical tool for updating and correcting factual information in text-to-image models.