This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Dan SaattrupNielsen
Also published as:
Dan Saattrup Nielsen
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents Hotter and Colder, a dataset designed to analyze various types of online behavior in Icelandic blog comments. Building on previous work, we used GPT-4o mini to annotate approximately 800,000 comments for 25 tasks, including sentiment analysis, emotion detection, hate speech, and group generalizations. Each comment was automatically labeled on a 5-point Likert scale. In a second annotation stage, comments with high or low probabilities of containing each examined behavior were subjected to manual revision. By leveraging crowdworkers to refine these automatically labeled comments, we ensure the quality and accuracy of our dataset resulting in 12,232 uniquely annotated comments and 19,301 annotations. Hotter and Colder provides an essential resource for advancing research in content moderation and automatically detectiong harmful online behaviors in Icelandic. We release both the dataset and annotation interface.
This paper explores the performance of encoder and decoder language models on multilingual Natural Language Understanding (NLU) tasks, with a broad focus on Germanic languages. Building upon the ScandEval benchmark, initially restricted to evaluating encoder models, we extend the evaluation framework to include decoder models. We introduce a method for evaluating decoder models on NLU tasks and apply it to the languages Danish, Swedish, Norwegian, Icelandic, Faroese, German, Dutch, and English. Through a series of experiments and analyses, we also address research questions regarding the comparative performance of encoder and decoder models, the impact of NLU task types, and the variation across language resources. Our findings reveal that encoder models can achieve significantly better NLU performance than decoder models despite having orders of magnitude fewer parameters. Additionally, we investigate the correlation between decoders and task performance via a UMAP analysis, shedding light on the unique capabilities of decoder and encoder models. This study contributes to a deeper understanding of language model paradigms in NLU tasks and provides valuable insights for model selection and evaluation in multilingual settings.
We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis.