Damien Cram


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
Terminology Extraction with Term Variant Detection
Damien Cram | Béatrice Daille
Proceedings of ACL-2016 System Demonstrations

pdf bib
How Document Pre-processing affects Keyphrase Extraction Performance
Florian Boudin | Hugo Mougard | Damien Cram
Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)

The SemEval-2010 benchmark dataset has brought renewed attention to the task of automatic keyphrase extraction. This dataset is made up of scientific articles that were automatically converted from PDF format to plain text and thus require careful preprocessing so that irrevelant spans of text do not negatively affect keyphrase extraction performance. In previous work, a wide range of document preprocessing techniques were described but their impact on the overall performance of keyphrase extraction models is still unexplored. Here, we re-assess the performance of several keyphrase extraction models and measure their robustness against increasingly sophisticated levels of document preprocessing.