This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
DamianosKarakos
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents BBN-U.Oregon’s system, ALERT, submitted to the Shared Task 3: Cross-Domain Machine-Generated Text Detection. Our approach uses robust authorship-style representations to distinguish between human-authored and machine-generated text (MGT) across various domains. We employ an ensemble-based authorship attribution (AA) system that integrates stylistic embeddings from two complementary subsystems: one that focuses on cross-genre robustness with hard positive and negative mining strategies and another that captures nuanced semantic-lexical-authorship contrasts. This combination enhances cross-domain generalization, even under domain shifts and adversarial attacks. Evaluated on the RAID benchmark, our system demonstrates strong performance across genres and decoding strategies, with resilience against adversarial manipulation, achieving 91.8% TPR at FPR=5% on standard test sets and 82.6% on adversarial sets.
Authorship obfuscation, the task of rewriting text to protect the original author’s identity, is becoming increasingly important due to the rise of advanced NLP tools for authorship attribution techniques. Traditional methods for authorship obfuscation face significant challenges in balancing content preservation, fluency, and style concealment. This paper introduces a novel approach, the Obfuscation Strategy Optimizer (OSO), which dynamically selects the optimal obfuscation technique based on a combination of metrics including embedding distance, meaning similarity, and fluency. By leveraging an ensemble of language models OSO achieves superior performance in preserving the original content’s meaning and grammatical fluency while effectively concealing the author’s unique writing style. Experimental results demonstrate that the OSO outperforms existing methods and approaches the performance of larger language models. Our evaluation framework incorporates adversarial testing against state-of-the-art attribution systems to validate the robustness of the obfuscation techniques. We release our code publicly at https://github.com/BBN-E/ObfuscationStrategyOptimizer
Multiple neural language models have been developed recently, e.g., BERT and XLNet, and achieved impressive results in various NLP tasks including sentence classification, question answering and document ranking. In this paper, we explore the use of the popular bidirectional language model, BERT, to model and learn the relevance between English queries and foreign-language documents in the task of cross-lingual information retrieval. A deep relevance matching model based on BERT is introduced and trained by finetuning a pretrained multilingual BERT model with weak supervision, using home-made CLIR training data derived from parallel corpora. Experimental results of the retrieval of Lithuanian documents against short English queries show that our model is effective and outperforms the competitive baseline approaches.
In the IARPA MATERIAL program, information retrieval (IR) is treated as a hard detection problem; the system has to output a single global ranking over all queries, and apply a hard threshold on this global list to come up with all the hypothesized relevant documents. This means that how queries are ranked relative to each other can have a dramatic impact on performance. In this paper, we study such a performance measure, the Average Query Weighted Value (AQWV), which is a combination of miss and false alarm rates. AQWV requires that the same detection threshold is applied to all queries. Hence, detection scores of different queries should be comparable, and, to do that, a score normalization technique (commonly used in keyword spotting from speech) should be used. We describe unsupervised methods for score normalization, which are borrowed from the speech field and adapted accordingly for IR, and demonstrate that they greatly improve AQWV on the task of cross-language information retrieval (CLIR), on three low-resource languages used in MATERIAL. We also present a novel supervised score normalization approach which gives additional gains.
In this paper, we describe a cross-lingual information retrieval (CLIR) system that, given a query in English, and a set of audio and text documents in a foreign language, can return a scored list of relevant documents, and present findings in a summary form in English. Foreign audio documents are first transcribed by a state-of-the-art pretrained multilingual speech recognition model that is finetuned to the target language. For text documents, we use multiple multilingual neural machine translation (MT) models to achieve good translation results, especially for low/medium resource languages. The processed documents and queries are then scored using a probabilistic CLIR model that makes use of the probability of translation from GIZA translation tables and scores from a Neural Network Lexical Translation Model (NNLTM). Additionally, advanced score normalization, combination, and thresholding schemes are employed to maximize the Average Query Weighted Value (AQWV) scores. The CLIR output, together with multiple translation renderings, are selected and translated into English snippets via a summarization model. Our turnkey system is language agnostic and can be quickly trained for a new low-resource language in few days.
We describe the human triage scenario envisioned in the Cross-Lingual Information Retrieval (CLIR) problem of the [REDUCT] Program. The overall goal is to maximize the quality of the set of documents that is given to a bilingual analyst, as measured by the AQWV score. The initial set of source documents that are retrieved by the CLIR system is summarized in English and presented to human judges who attempt to remove the irrelevant documents (false alarms); the resulting documents are then presented to the analyst. First, we describe the AQWV performance measure and show that, in our experience, if the acceptance threshold of the CLIR component has been optimized to maximize AQWV, the loss in AQWV due to false alarms is relatively constant across many conditions, which also limits the possible gain that can be achieved by any post filter (such as human judgments) that removes false alarms. Second, we analyze the likely benefits for the triage operation as a function of the initial CLIR AQWV score and the ability of the human judges to remove false alarms without removing relevant documents. Third, we demonstrate that we can increase the benefit for human judgments by combining the human judgment scores with the original document scores returned by the automatic CLIR system.
We propose a weakly supervised neural model for Ad-hoc Cross-lingual Information Retrieval (CLIR) from low-resource languages. Low resource languages often lack relevance annotations for CLIR, and when available the training data usually has limited coverage for possible queries. In this paper, we design a model which does not require relevance annotations, instead it is trained on samples extracted from translation corpora as weak supervision. This model relies on an attention mechanism to learn spans in the foreign sentence that are relevant to the query. We report experiments on two low resource languages: Swahili and Tagalog, trained on less that 100k parallel sentences each. The proposed model achieves 19 MAP points improvement compared to using CNNs for feature extraction, 12 points improvement from machine translation-based CLIR, and up to 6 points improvement compared to probabilistic CLIR models.
Research into the translation of the output of automatic speech recognition (ASR) systems is hindered by the dearth of datasets developed for that explicit purpose. For SpanishEnglish translation, in particular, most parallel data available exists only in vastly different domains and registers. In order to support research on cross-lingual speech applications, we introduce the Fisher and Callhome Spanish-English Speech Translation Corpus, supplementing existing LDC audio and transcripts with (a) ASR 1-best, lattice, and oracle output produced by the Kaldi recognition system and (b) English translations obtained on Amazon’s Mechanical Turk. The result is a four-way parallel dataset of Spanish audio, transcriptions, ASR lattices, and English translations of approximately 38 hours of speech, with defined training, development, and held-out test sets. We conduct baseline machine translation experiments using models trained on the provided training data, and validate the dataset by corroborating a number of known results in the field, including the utility of in-domain (information, conversational) training data, increased performance translating lattices (instead of recognizer 1-best output), and the relationship between word error rate and BLEU score.