Daivik Agrawal


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Text2Afford: Probing Object Affordance Prediction abilities of Language Models solely from Text
Sayantan Adak | Daivik Agrawal | Animesh Mukherjee | Somak Aditya
Proceedings of the 28th Conference on Computational Natural Language Learning

We investigate the knowledge of object affordances in pre-trained language models (LMs) and pre-trained Vision-Language models (VLMs).A growing body of literature shows that PTLMs fail inconsistently and non-intuitively, demonstrating a lack of reasoning and grounding. To take a first step toward quantifying the effect of grounding (or lack thereof), we curate a novel and comprehensive dataset of object affordances – Text2Afford, characterized by 15 affordance classes. Unlike affordance datasets collected in vision and language domains, we annotate in-the-wild sentences with objects and affordances. Experimental results reveal that PTLMs exhibit limited reasoning abilities when it comes to uncommon object affordances. We also observe that pre-trained VLMs do not necessarily capture object affordances effectively. Through few-shot fine-tuning, we demonstrate improvement in affordance knowledge in PTLMs and VLMs. Our research contributes a novel dataset for language grounding tasks, and presents insights into LM capabilities, advancing the understanding of object affordances.