Daisuke Yagi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LLM-Enhanced Self-Evolving Reinforcement Learning for Multi-Step E-Commerce Payment Fraud Risk Detection
Bo Qu | Zhurong Wang | Daisuke Yagi | Zach Xu | Yang Zhao | Yinan Shan | Frank Zahradnik
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

This paper presents a novel approach to e-commerce payment fraud detection by integrating reinforcement learning (RL) with Large Language Models (LLMs). By framing transaction risk as a multi-step Markov Decision Process (MDP), RL optimizes risk detection across multiple payment stages. Crafting effective reward functions, essential for RL model success, typically requires significant human expertise due to the complexity and variability in design. LLMs, with their advanced reasoning and coding capabilities, are well-suited to refine these functions, offering improvements over traditional methods. Our approach leverages LLMs to iteratively enhance reward functions, achieving better fraud detection accuracy and demonstrating zero-shot capability. Experiments with real-world data confirm the effectiveness, robustness, and resilience of our LLM-enhanced RL framework through long-term evaluations, underscoring the potential of LLMs in advancing industrial RL applications.