Daisuke Okada


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2010

pdf bib
Using Comparable Corpora to Adapt a Translation Model to Domains
Hiroyuki Kaji | Takashi Tsunakawa | Daisuke Okada
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

Statistical machine translation (SMT) requires a large parallel corpus, which is available only for restricted language pairs and domains. To expand the language pairs and domains to which SMT is applicable, we created a method for estimating translation pseudo-probabilities from bilingual comparable corpora. The essence of our method is to calculate pairwise correlations between the words associated with a source-language word, presently restricted to a noun, and its translations; word translation pseudo-probabilities are calculated based on the assumption that the more associated words a translation is correlated with, the higher its translation probability. We also describe a method we created for calculating noun-sequence translation pseudo-probabilities based on occurrence frequencies of noun sequences and constituent-word translation pseudo-probabilities. Then, we present a framework for merging the translation pseudo-probabilities estimated from in-domain comparable corpora with a translation model learned from an out-of-domain parallel corpus. Experiments using Japanese and English comparable corpora of scientific paper abstracts and a Japanese-English parallel corpus of patent abstracts showed promising results; the BLEU score was improved to some degree by incorporating the pseudo-probabilities estimated from the in-domain comparable corpora. Future work includes an optimization of the parameters and an extension to estimate translation pseudo-probabilities for verbs.