Daiheng Gao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MES-RAG: Bringing Multi-modal, Entity-Storage, and Secure Enhancements to RAG
Pingyu Wu | Daiheng Gao | Jing Tang | Huimin Chen | Wenbo Zhou | Weiming Zhang | Nenghai Yu
Findings of the Association for Computational Linguistics: NAACL 2025

Retrieval-Augmented Generation (RAG) improves Large Language Models (LLMs) by using external knowledge, but it struggles with precise entity information retrieval. Our proposed **MES-RAG** framework enhances entity-specific query handling and provides accurate, secure, and consistent responses. MES-RAG introduces proactive security measures that ensure system integrity by applying protections prior to data access. Additionally, the system supports real-time multi-modal outputs, including text, images, audio, and video, seamlessly integrating into existing RAG architectures. Experimental results demonstrate that MES-RAG significantly improves both accuracy and recall, highlighting its effectiveness in advancing the security and utility of question-answering, increasing accuracy to **0.83 (+0.25)** on targeted task. Our code and data are available at https://github.com/wpydcr/MES-RAG.