Daeil Kim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Target-Aware Language Modeling via Granular Data Sampling
Ernie Chang | Pin-Jie Lin | Yang Li | Changsheng Zhao | Daeil Kim | Rastislav Rabatin | Zechun Liu | Yangyang Shi | Vikas Chandra
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Language model pretraining generally targets a broad range of use cases and incorporates data from diverse sources. However, there are instances where we desire a model that excels in specific areas without markedly compromising performance in other areas. A cost-effective and straightforward approach is sampling with low-dimensional data features, which allows selecting large-scale pretraining data for domain-specific use cases. In this work, we revisit importance sampling with n-gram features consisting of multi-granular tokens, which strikes a good balance between sentence compression and representation capabilities. We observed the sampled data to have a high correlation with the target downstream task performance *while preserving its effectiveness on other tasks*. This leads to the proposed data sampling paradigm where language models can be pretrained more efficiently on selected documents. On eight benchmarks we demonstrate with ~1% of the data, pretrained models perform on par with the full RefinedWeb data and outperform randomly selected samples for model sizes ranging from 125M to 1.5B.