D. Yarowsky


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2003

pdf bib
The Johns Hopkins University 2003 Chinese-English machine translation system
W. Byrne | S. Khudanpur | W. Kim | S. Kumar | P. Pecina | P. Virga | P. Xu | D. Yarowsky
Proceedings of Machine Translation Summit IX: System Presentations

We describe a Chinese to English Machine Translation system developed at the Johns Hopkins University for the NIST 2003 MT evaluation. The system is based on a Weighted Finite State Transducer implementation of the alignment template translation model for statistical machine translation. The baseline MT system was trained using 100,000 sentence pairs selected from a static bitext training collection. Information retrieval techniques were then used to create specific training collections for each document to be translated. This document-specific training set included bitext and name entities that were then added to the baseline system by augmenting the library of alignment templates. We report translation performance of baseline and IR-based systems on two NIST MT evaluation test sets.