This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
CynthiaMatuszek
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external document retrieval to provide domain-specific or up-to-date knowledge. The effectiveness of RAG depends on the relevance of retrieved documents, which is influenced by the semantic alignment of embeddings with the domain’s specialized content. Although full fine-tuning can align language models to specific domains, it is computationally intensive and demands substantial data. This paper introduces Hierarchical Embedding Alignment Loss (HEAL), a novel method that leverages hierarchical fuzzy clustering with matrix factorization within contrastive learning to efficiently align LLM embeddings with domain-specific content. HEAL computes level/depth-wise contrastive losses and incorporates hierarchical penalties to align embeddings with the underlying relationships in label hierarchies. This approach enhances retrieval relevance and document classification, effectively reducing hallucinations in LLM outputs. In our experiments, we benchmark and evaluate HEAL across diverse domains, including Healthcare, Material Science, Cyber-security, and Applied Maths.
In this paper we describe a multilingual grounded language learning system adapted from an English-only system. This system learns the meaning of words used in crowd-sourced descriptions by grounding them in the physical representations of the objects they are describing. Our work presents a framework to compare the performance of the system when applied to a new language and to identify modifications necessary to attain equal performance, with the goal of enhancing the ability of robots to learn language from a more diverse range of people. We then demonstrate this system with Spanish, through first analyzing the performance of translated Spanish, and then extending this analysis to a new corpus of crowd-sourced Spanish language data. We find that with small modifications, the system is able to learn color, object, and shape words with comparable performance between languages.