Curtis Wigington


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
TELIN: Table Entity LINker for Extracting Leaderboards from Machine Learning Publications
Sean Yang | Chris Tensmeyer | Curtis Wigington
Proceedings of the first Workshop on Information Extraction from Scientific Publications

Tracking state-of-the-art (SOTA) results in machine learning studies is challenging due to high publication volume. Existing methods for creating leaderboards in scientific documents require significant human supervision or rely on scarcely available LaTeX source files. We propose Table Entity LINker (TELIN), a framework which extracts (task, model, dataset, metric) quadruples from collections of scientific publications in PDF format. TELIN identifies scientific named entities, constructs a knowledge base, and leverages human feedback to iteratively refine automatic extractions. TELIN identifies and prioritizes uncertain and impactful entities for human review to create a cascade effect for leaderboard completion. We show that TELIN is competitive with the SOTA but requires much less human annotation.