This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
CunliMao
Also published as:
存礼 毛
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) based Multilingual Knowledge Graph Completion (MKGC) aim to predict missing facts by leveraging LLMs’ multilingual understanding capabilities, improving the completeness of multilingual knowledge graphs (KGs).However, existing MKGC research underutilizes the multilingual capabilities of LLMs and ignores the shareability of cross-lingual knowledge.In this paper, we propose a novel MKGC framework that leverages multilingual shared knowledge to significantly enhance performance through two components: Knowledge-level Grouped Mixture of Experts (KL-GMoE) and Iterative Entity Reranking (IER).KL-GMoE efficiently models shared knowledge, while IER significantly enhances its utilization.To evaluate our framework, we constructed a mKG dataset containing 5 languages and conducted comprehensive comparative experiments with existing state-of-the-art (SOTA) MKGC method.The experimental results demonstrate that our framework achieves improvements of 5.47%, 3.27%, and 1.01% in the Hits@1, Hits@3, and Hits@10 metrics, respectively, compared with SOTA MKGC method.Further experimental analysis revealed the properties of knowledge sharing in settings of unseen and unbalanced languages.We have released the dataset and code for our work on https://github.com/gaoxiaofei07/KL-GMoE.
Personalized dialogue systems have gained significant attention in recent years for their ability to generate responses in alignment with different personas. However, most existing approaches rely on pre-defined personal profiles, which are not only time-consuming and labor-intensive to create but also lack flexibility. We propose In-Dialogue Learning (IDL), a fine-tuning framework that enhances the ability of pre-trained large language models to leverage dialogue history to characterize persona for personalized dialogue generation tasks without pre-defined profiles. Our experiments on three datasets demonstrate that IDL brings substantial improvements, with BLEU and ROUGE scores increasing by up to 200% and 247%, respectively. Additionally, the results of human evaluations further validate the efficacy of our proposed method.
With the strong representational capabilities of pre-trained language models, dependency parsing in resource-rich languages has seen significant advancements. However, the parsing accuracy drops sharply when the model is transferred to low-resource language due to distribution shifts. To alleviate this issue, we propose a representation alignment and adversarial model to filter out useful knowledge from rich-resource language and ignore useless ones. Our proposed model consists of two components, i.e., an alignment network in the input layer for selecting useful language-specific features and an adversarial network in the encoder layer for augmenting the language-invariant contextualized features. Experiments on the benchmark datasets show that our proposed model outperforms RoBERTa-enhanced strong baseline models by 1.37 LAS and 1.34 UAS. Detailed analysis shows that both alignment and adversarial networks are equally important in alleviating the distribution shifts problem and can complement each other. In addition, the comparative experiments demonstrate that both the alignment and adversarial networks can substantially facilitate extracting and utilizing relevant target language features, thereby increasing the adaptation capability of our proposed model.
Existing accent transfer works rely on parallel data or speech recognition models. This paper focuses on the practical application of accent transfer and aims to implement accent transfer using non-parallel datasets. The study has encountered the challenge of speech representation disentanglement and modeling accents. In our accent modeling transfer framework, we manage to solve these problems by two proposed methods. First, we learn the suprasegmental information associated with tone to finely model the accents in terms of tone and rhythm. Second, we propose to use mutual information learning to disentangle the accent features and control the accent of the generated speech during the inference time. Experiments show that the proposed framework attains superior performance to the baseline models in terms of accentedness and audio quality.