Cunjin Luo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Prompting Explicit and Implicit Knowledge for Multi-hop Question Answering Based on Human Reading Process
Guangming Huang | Yunfei Long | Cunjin Luo | Jiaxing Shen | Xia Sun
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs’ reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in passages and human prior knowledge during reading. Nevertheless, current research has given insufficient attention to linking input passages and PLMs’ pre-training-based knowledge from the perspective of human cognition studies. In this study, we introduce a Prompting Explicit and Implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, employing them to elicit implicit knowledge through unified prompt reasoning. Furthermore, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the efficacy of our model in bridging and integrating explicit and implicit knowledge.

2023

pdf bib
LIDA: Lexical-Based Imbalanced Data Augmentation for Content Moderation
Guangming Huang | Yunfei Long | Cunjin Luo | Yingya Li
Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation