Cüneyt Aksakallı


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Sefamerve ARGE at SemEval-2021 Task 5: Toxic Spans Detection Using Segmentation Based 1-D Convolutional Neural Network Model
Selman Delil | Birol Kuyumcu | Cüneyt Aksakallı
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our contribution to SemEval-2021 Task 5: Toxic Spans Detection. Our approach considers toxic spans detection as a segmentation problem. The system, Waw-unet, consists of a 1-D convolutional neural network adopted from U-Net architecture commonly applied for semantic segmentation. We customize existing architecture by adding a special network block considering for text segmentation, as an essential component of the model. We compared the model with two transformers-based systems RoBERTa and XLM-RoBERTa to see its performance against pre-trained language models. We obtained 0.6251 f1 score with Waw-unet while 0.6390 and 0.6601 with the compared models respectively.