Corina Florescu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2017

pdf bib
PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents
Corina Florescu | Cornelia Caragea
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The large and growing amounts of online scholarly data present both challenges and opportunities to enhance knowledge discovery. One such challenge is to automatically extract a small set of keyphrases from a document that can accurately describe the document’s content and can facilitate fast information processing. In this paper, we propose PositionRank, an unsupervised model for keyphrase extraction from scholarly documents that incorporates information from all positions of a word’s occurrences into a biased PageRank. Our model obtains remarkable improvements in performance over PageRank models that do not take into account word positions as well as over strong baselines for this task. Specifically, on several datasets of research papers, PositionRank achieves improvements as high as 29.09%.