Colten DiIanni


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Don’t Sweat the Small Stuff: Segment-Level Meta-Evaluation Based on Pairwise Difference Correlation
Colten DiIanni | Daniel Deutsch
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This paper introduces Pairwise Difference Pearson (PDP), a novel segment-level meta-evaluation metric for Machine Translation (MT) that addresses limitations in previous Pearson’s 𝜌-based and Kendall’s 𝜏-based meta-evaluation approaches. PDP is a correlation-based metric that utilizes pairwise differences rather than raw scores. It draws on information from all segments for a more robust understanding of score distributions and uses only pairwise differences to refine Global Pearson to intra-segment comparisons. Analysis on the WMT’24 shared task shows PDP properly ranks sentinel evaluation metrics and better aligns with human error weightings than acceq.