This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ColinLockard
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
The Multimodal Large Language Models (MLLMs) are continually pre-trained on a mixture of image-text caption data and interleaved document data, while the high-quality data filtering towards image-text interleaved document data is under-explored. We propose to train an efficient MLLM as a Unified Mulitmodal Data Quality Classifier to Filter both high-quality image-text caption and interleaved data (UniFilter). To address the challenge of collecting diverse labeled multimodal data, we introduce a semi-synthetic approach that leverages readily available raw images and generates corresponding text across four quality levels. This method enables efficient creation of sample-score pairs for both caption and interleaved document data to train UniFilter. We apply UniFilter to curate high-quality caption data from DataComp caption dataset and interleaved data from the OBELICS image-text interleaved dataset. MLLMs pre-trained on the filtered data demonstrate significantly enhanced capabilities compared to those trained on baseline-filtered data, achieving stronger zero-shot reasoning and in-context learning capabilities. After visual supervised fine-tuning, these UniFilter-induced MLLMs achieve stronger performance on various benchmarks, highlighting the downstream benefits of high-quality multimodal pre-training.
Large Language Models (LLMs) are increasingly employed in multi-turn conversational tasks, yet their pre-training data predominantly consists of continuous prose, creating a potential mismatch between required capabilities and training paradigms. We introduce a novel approach to address this discrepancy by synthesizing conversational data from existing text corpora. We present a pipeline that transforms a cluster of multiple related documents into an extended multi-turn, multi-topic information-seeking dialogue. Applying our pipeline to Wikipedia articles, we curate DocTalk, a multi-turn pre-training dialogue corpus consisting of over 730k long conversations. We hypothesize that exposure to such synthesized conversational structures during pre-training can enhance the fundamental multi-turn capabilities of LLMs, such as context memory and understanding. Empirically, we show that incorporating DocTalk during pre-training results in up to 40% gain in context memory and understanding, without compromising base performance. DocTalk is available at https://huggingface.co/datasets/AmazonScience/DocTalk.
Recently, neural models have been leveraged to significantly improve the performance of information extraction from semi-structured websites. However, a barrier for continued progress is the small number of datasets large enough to train these models. In this work, we introduce the PLAtE (Pages of Lists Attribute Extraction) benchmark dataset as a challenging new web extraction task. PLAtE focuses on shopping data, specifically extractions from product review pages with multiple items encompassing the tasks of: (1) finding product list segmentation boundaries and (2) extracting attributes for each product. PLAtE is composed of 52,898 items collected from 6,694 pages and 156,014 attributes, making it the first large-scale list page web extraction dataset. We use a multi-stage approach to collect and annotate the dataset and adapt three state-of-the-art web extraction models to the two tasks comparing their strengths and weaknesses both quantitatively and qualitatively.
Recommending a diversity of product types (PTs) is important for a good shopping experience when customers are looking for products around their high-level shopping interests (SIs) such as hiking. However, the SI-PT connection is typically absent in e-commerce product catalogs and expensive to construct manually due to the volume of potential SIs, which prevents us from establishing a recommender with easily accessible knowledge systems. To establish such connections, we propose to extract PTs from the Web pages containing hand-crafted PT recommendations for SIs. The extraction task is formulated as binary HTML node classification given the general observation that an HTML node in our target Web pages can present one and only one PT phrase. Accordingly, we introduce TrENC, which stands for Tree-Transformer Encoders for Node Classification. It improves the inter-node dependency modeling with modified attention mechanisms that preserve the long-term sibling and ancestor-descendant relations. TrENC also injects SI into node features for better semantic representation. Trained on pages regarding limited SIs, TrEnc is ready to be applied to other unobserved interests. Experiments on our manually constructed dataset, WebPT, show that TrENC outperforms the best baseline model by 2.37 F1 points in the zero-shot setup. The performance indicates the feasibility of constructing SI-PT relations and using them to power downstream applications such as search and recommendation.
In many documents, such as semi-structured webpages, textual semantics are augmented with additional information conveyed using visual elements including layout, font size, and color. Prior work on information extraction from semi-structured websites has required learning an extraction model specific to a given template via either manually labeled or distantly supervised data from that template. In this work, we propose a solution for “zero-shot” open-domain relation extraction from webpages with a previously unseen template, including from websites with little overlap with existing sources of knowledge for distant supervision and websites in entirely new subject verticals. Our model uses a graph neural network-based approach to build a rich representation of text fields on a webpage and the relationships between them, enabling generalization to new templates. Experiments show this approach provides a 31% F1 gain over a baseline for zero-shot extraction in a new subject vertical.
The World Wide Web contains vast quantities of textual information in several forms: unstructured text, template-based semi-structured webpages (which present data in key-value pairs and lists), and tables. Methods for extracting information from these sources and converting it to a structured form have been a target of research from the natural language processing (NLP), data mining, and database communities. While these researchers have largely separated extraction from web data into different problems based on the modality of the data, they have faced similar problems such as learning with limited labeled data, defining (or avoiding defining) ontologies, making use of prior knowledge, and scaling solutions to deal with the size of the Web. In this tutorial we take a holistic view toward information extraction, exploring the commonalities in the challenges and solutions developed to address these different forms of text. We will explore the approaches targeted at unstructured text that largely rely on learning syntactic or semantic textual patterns, approaches targeted at semi-structured documents that learn to identify structural patterns in the template, and approaches targeting web tables which rely heavily on entity linking and type information. While these different data modalities have largely been considered separately in the past, recent research has started taking a more inclusive approach toward textual extraction, in which the multiple signals offered by textual, layout, and visual clues are combined into a single extraction model made possible by new deep learning approaches. At the same time, trends within purely textual extraction have shifted toward full-document understanding rather than considering sentences as independent units. With this in mind, it is worth considering the information extraction problem as a whole to motivate solutions that harness textual semantics along with visual and semi-structured layout information. We will discuss these approaches and suggest avenues for future work.
In this paper, we consider advancing web-scale knowledge extraction and alignment by integrating OpenIE extractions in the form of (subject, predicate, object) triples with Knowledge Bases (KB). Traditional techniques from universal schema and from schema mapping fall in two extremes: either they perform instance-level inference relying on embedding for (subject, object) pairs, thus cannot handle pairs absent in any existing triples; or they perform predicate-level mapping and completely ignore background evidence from individual entities, thus cannot achieve satisfying quality. We propose OpenKI to handle sparsity of OpenIE extractions by performing instance-level inference: for each entity, we encode the rich information in its neighborhood in both KB and OpenIE extractions, and leverage this information in relation inference by exploring different methods of aggregation and attention. In order to handle unseen entities, our model is designed without creating entity-specific parameters. Extensive experiments show that this method not only significantly improves state-of-the-art for conventional OpenIE extractions like ReVerb, but also boosts the performance on OpenIE from semi-structured data, where new entity pairs are abundant and data are fairly sparse.
Open Information Extraction (OpenIE), the problem of harvesting triples from natural language text whose predicate relations are not aligned to any pre-defined ontology, has been a popular subject of research for the last decade. However, this research has largely ignored the vast quantity of facts available in semi-structured webpages. In this paper, we define the problem of OpenIE from semi-structured websites to extract such facts, and present an approach for solving it. We also introduce a labeled evaluation dataset to motivate research in this area. Given a semi-structured website and a set of seed facts for some relations existing on its pages, we employ a semi-supervised label propagation technique to automatically create training data for the relations present on the site. We then use this training data to learn a classifier for relation extraction. Experimental results of this method on our new benchmark dataset obtained a precision of over 70%. A larger scale extraction experiment on 31 websites in the movie vertical resulted in the extraction of over 2 million triples.
Supervised event extraction systems are limited in their accuracy due to the lack of available training data. We present a method for self-training event extraction systems by bootstrapping additional training data. This is done by taking advantage of the occurrence of multiple mentions of the same event instances across newswire articles from multiple sources. If our system can make a high-confidence extraction of some mentions in such a cluster, it can then acquire diverse training examples by adding the other mentions as well. Our experiments show significant performance improvements on multiple event extractors over ACE 2005 and TAC-KBP 2015 datasets.