Cole Simmons


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
SumTablets: A Transliteration Dataset of Sumerian Tablets
Cole Simmons | Richard Diehl Martinez | Dan Jurafsky
Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024)

Sumerian transliteration is a conventional system for representing a scholar's interpretation of a tablet in the Latin script. Thanks to visionary digital Assyriology projects such as ETCSL, CDLI, and Oracc, a large number of Sumerian transliterations have been published online, and these data are well-structured for a variety of search and analysis tasks. However, the absence of a comprehensive, accessible dataset pairing transliterations with a digital representation of the tablet's cuneiform glyphs has prevented the application of modern Natural Language Processing (NLP) methods to the task of Sumerian transliteration.To address this gap, we present SumTablets, a dataset pairing Unicode representations of 91,606 Sumerian cuneiform tablets (totaling 6,970,407 glyphs) with the associated transliterations published by Oracc. We construct SumTablets by first preprocessing and standardizing the Oracc transliterations before mapping each reading back to the Unicode representation of the source glyph. Further, we retain parallel structural information (e.g., surfaces, newlines, broken segments) through the use of special tokens. We release SumTablets as a Hugging Face Dataset (CC BY 4.0) and open source data preparation code via GitHub.Additionally, we leverage SumTablets to implement and evaluate two transliteration baselines: (1) weighted sampling from a glyph's possible readings, and (2) fine-tuning an autoregressive language model. Our fine-tuned language model achieves an average transliteration character-level F-score (chrF) of 97.55, demonstrating the immediate potential of transformer-based transliteration models in allowing experts to rapidly verify generated transliterations rather than manually transliterating tablets one-by-one.