Clement Odoje


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Varepsilon kú mask: Integrating Yorùbá cultural greetings into machine translation
Idris Akinade | Jesujoba O. Alabi | David Ifeoluwa Adelani | Clement Odoje | Dietrich Klakow
Proceedings of the First Workshop on Cross-Cultural Considerations in NLP (C3NLP)

This paper investigates the performance of massively multilingual neural machine translation (NMT) systems in translating Yorùbá greetings (kú mask), which are a big part of Yorùbá language and culture, into English. To evaluate these models, we present IkiniYorùbá, a Yorùbá-English translation dataset containing some Yorùbá greetings, and sample use cases. We analysed the performance of different multilingual NMT systems including Google and NLLB and show that these models struggle to accurately translate Yorùbá greetings into English. In addition, we trained a Yorùbá-English model by fine-tuning an existing NMT model on the training split of IkiniYorùbá and this achieved better performance when compared to the pre-trained multilingual NMT models, although they were trained on a large volume of data.