Clement Lu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
C1 at SemEval-2020 Task 9: SentiMix: Sentiment Analysis for Code-Mixed Social Media Text Using Feature Engineering
Laksh Advani | Clement Lu | Suraj Maharjan
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In today’s interconnected and multilingual world, code-mixing of languages on social media is a common occurrence. While many Natural Language Processing (NLP) tasks like sentiment analysis are mature and well designed for monolingual text, techniques to apply these tasks to code-mixed text still warrant exploration. This paper describes our feature engineering approach to sentiment analysis in code-mixed social media text for SemEval-2020 Task 9: SentiMix. We tackle this problem by leveraging a set of hand-engineered lexical, sentiment, and metadata fea- tures to design a classifier that can disambiguate between “positive”, “negative” and “neutral” sentiment. With this model we are able to obtain a weighted F1 score of 0.65 for the “Hinglish” task and 0.63 for the “Spanglish” tasks.