Clara Egger


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
A Multilingual Approach to Identify and Classify Exceptional Measures against COVID-19
Georgios Tziafas | Eugenie de Saint-Phalle | Wietse de Vries | Clara Egger | Tommaso Caselli
Proceedings of the Natural Legal Language Processing Workshop 2021

The COVID-19 pandemic has witnessed the implementations of exceptional measures by governments across the world to counteract its impact. This work presents the initial results of an on-going project, EXCEPTIUS, aiming to automatically identify, classify and com- pare exceptional measures against COVID-19 across 32 countries in Europe. To this goal, we created a corpus of legal documents with sentence-level annotations of eight different classes of exceptional measures that are im- plemented across these countries. We evalu- ated multiple multi-label classifiers on a manu- ally annotated corpus at sentence level. The XLM-RoBERTa model achieves highest per- formance on this multilingual multi-label clas- sification task, with a macro-average F1 score of 59.8%.