Claire Jaja


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2012

pdf bib
Assessing Divergence Measures for Automated Document Routing in an Adaptive MT System
Claire Jaja | Douglas Briesch | Jamal Laoudi | Clare Voss
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Custom machine translation (MT) engines systematically outperform general-domain MT engines when translating within the relevant custom domain. This paper investigates the use of the Jensen-Shannon divergence measure for automatically routing new documents within a translation system with multiple MT engines to the appropriate custom MT engine in order to obtain the best translation. Three distinct domains are compared, and the impact of the language, size, and preprocessing of the documents on the Jensen-Shannon score is addressed. Six test datasets are then compared to the three known-domain corpora to predict which of the three custom MT engines they would be routed to at runtime given their Jensen-Shannon scores. The results are promising for incorporating this divergence measure into a translation workflow.